THE CONFORMATIONAL PREFERENCE OF THE S=O BOND OF THIANE-3-ONE 1-OXIDE AND OF 1,3-DITHIANE-5-ONE 1-OXIDE

Knut Bergesen, a Brian M. Carden b and Michael J. Cook b*

Kjemisk Institutt, Universitetet i Bergen, 5014 Bergen-Universitetet, Norway
School of Chemical Sciences, University of East Anglia, Norwich, England

(Received in France 1 October 1975; received in UK for publication 4 November 1975)

Recent studies have shown that the conformational preference of the S=0 bond in six membered ring sulphoxides varies somewhat unpredictably with the atom or group in the β -position. Thus thiane 1-oxide 1 exists predominantly as $\frac{1}{2}$ and a similar preference is exhibited by 1,3-oxathiane 3-oxide 2, at least at low temperature. In marked contrast however 1,3-dithiane 1-oxides and 4 adopt preferentially the equatorial S=0 conformer and 1,3,5-trithiane 1-oxide probably behaves similarly. We now report results of a study of 5 and 6 designed to explore 1, the effect of a β -carbonyl group and 1, the generality of the equatorial S=0 bond preference in 1,3-dithiane 1-oxide derivatives.

¹H Chemical shifts for <u>5</u> and <u>6</u> in CDCl₃, obtained from 220 MHz and 100 MHz spectra respectively, are shown in Fig.1. Assignments were confirmed by selective deuterium labelling.⁶

Coupling constants in 5 reveal that the conformational equilibrium is very heavily biased towards one chair form. Thus H_g is very predominantly axial, J_{eg} =11 and J_{fg} =3.0 Hz, while H_h shows splitting typical of equatorial protons. Furthermore, H_b experiences 4-bond coupling (via a planar W pathway) to H_d and H_h whereas H_a appears as a simple doublet. That the S=0 bond is

4480 No. 50

axial in the predominant conformer follows from \underline{i} , the deshielding of the $\underline{\text{syn}}$ axial proton H_e^7 and \underline{i} , the small chemical shift difference for H_h and H_g^{-1}

In thisme 1-oxide the predominance of $\underline{1ax}$ over $\underline{1eq}$ arises from two attractive \underline{syn} axial S=0 -- C-H bond interactions. In $\underline{5}$, one of these is absent and the C=0 dipole probably destabilises the axial S=0 conformer further, and yet the axial S=0 preference is maintained, if not enhanced! We believe that S=0 -- C=0 interactions, which are conformationally dependent, are important here: significantly, the uv spectrum of $\underline{7}$ is more intense with longer λ_{max} than that of 8.9

The position of the conformational equilibrium of $\underline{6}$ is now intriguing in view of the contrasting preferences exhibited by $\underline{3}$ and $\underline{5}$. The nmr spectrum of $\underline{6}$ shows that here again one conformer is adopted very predominantly, (only H_b , H_d and H_f experiencing 4-bond coupling, $\overset{4}{\underline{J}}$ ca. 1.5 Hz), and from the following data we conclude it is that having the S=0 bond equatorial. \underline{i} , The value 0.75 ppm for $(sH_b-sH_a)-(sH_d-sH_e)^{10}$ compares well with the value of 0.66 ppm for the corresponding parameter in $\underline{9}$ (cf also -0.05 ppm in $\underline{10}$) and $\underline{11}$, $\underline{5}$ H_f- $\underline{5}$ H_a = 0.38 ppm; cf 0.38 in $\underline{3}$ eq and 0.18 ppm in $\underline{3}$ ex. $\underline{3}$

We surmise that in $\underline{6}$, factors which lead to the axial S=0 preference in $\underline{5}$ are either absent or overwhelmed by the effects of the β -sulphur atom.

Acknowledgements. We thank NATO for a grant and PCMU for the 220 MHz spectrum

- 1 J.B. Lambert and R.G. Keske J. Org. Chem., 31, 3429 (1966)
- 2 K. Bergesen, M.J. Cook and A.P. Tonge Org. Mag. Resonance, 6, 127 (1974)
- 3 L. Van Acker and M. Anteunis Tetrahedron Lett., 225 (1974)
- 4 M.J. Cook and A.P. Tonge, <u>Tetrahedron Lett.</u>, 849 (1973): M.J. Cook and A.P. Tonge <u>J.C.S. Perkin II</u> 767 (1974)
- 5 S.A. Khan, J.B. Lambert, O. Hernandez and F.A Carey, <u>J. Am. Chem. Soc.</u>, <u>97</u> 1468 (1975)
- 6 Details of preparative work will be given elsewhere
- 7 K.W. Buck, A.B. Foster, W.D. Pardoe, M.H. Qadir and J.M. Webber, Chem. Comm. 759 (1966)
- 8 N.L. Allinger, J.A. Hirsch, M.A. Miller and I.J. Tyminski, <u>J. Am. Chem. Soc.</u>, 91, 337 (1969)
- 9 C. Ganter and J.F. Moser, Helv. Chim. Acta 54, 2228 (1971)
- 10 To a first approximation differential deshielding of axial and equatorial protons by the intervening group, here C=0, cancels in this term.